System Design and Methodology /
Embedded Systems Design

VIII. Architectures and Platforms

TDTS07/TDDIO8
VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen for datavetenskap (IDA)
Linkopings universitet

1 of 63

©® N o O > W BN

ARCHITECTURES AND PLATFORMS

. Architecture Selection: The Basic Trade-offs

General Purpose vs. Application-Specific Processors
Processor Specialisation

ASIP Design Flow

Tool Support for Processor Specialisation

Application Specific Platforms

|IP-Based Design (Design Reuse)

Reconfigurable Systems

2 of 36

, <Informa| Specificatio

Constraints

Modeling

nD‘

\-.

Arch. Selection

¥ S
<« System model =

System

Y

| Functional

Simulation

Formal
Verification

Mapping

archltecture
| Estlmatlon ﬁi:

Scheduling |<e———

not OK ~\1apped and M

Qcheduled mode /\

not OK

—
L
—
—
e B
—

(" Softw. moderj—;
\

Softw. Generation

—--
—
—

—

—
_—

| OK

~

Simulation

Formal
Verification

Simulation

<—<Hardw. model)
Y

Hardw. Synthesis

Simulation

-«—(Hardw. blocks)

J

Testinh Prototype/

y OK
Fabrication

3 of 36

Architecture Selection and Mapping

Select underlying hardware structure on which to run the modelled system.

Map the functionality captured by the system over the components of the
selected architecture.

Functionality includes processing and communication.

4 of 36

Architecture Selection

General (Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific Build customised architecture strictly optimized for the application.

5 of 36

Architecture Selection

General (Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific Build customised architecture strictly optimized for the application.

Use programmable processors running software.
Software
VS. { or both
Hardware fixed

| Use dedicated electronics

reconfigurable

6 of 36

Architecture Selection

General (Use general purpose, existing platform and map the application on it.
Purpose

VS. < or something in-between

Application

Specific Build customised architecture strictly optimized for the application.

Use programmable processors running software.
Software

VS. 1 or both

Hardware fixed

reconfigurable

| Use dedicated electronics {

[
Monoprocessor

Mono vs. Multipr.

Single vs. Multichip 3 single chip

Multiprocessor { multi chip

\

7 of 36

Architecture Selection

The trade-offs:

0 Performance (high speed, low power consumption)

Application specific

General purpose

high

low

Hardware

Reconfigurable
hardware

Software

A high

low

8 of 36

Architecture Selection

The trade-offs:

0 Performance (high speed, low power consumption)

Application specific high Hardware A high
Reconfigurable

General purpose low hardware
Software low

0 Flexibility (how easy it is to upgrade or modify)

General purpose high Software A high

Reconfigurable

Application specific ow hardware

Hardware low

9 of 36

Architecture Selection

10 of 36

>
=
IS)
X
D
O—
O
O
0.1 ||||||||||||||||||
o ! .mJ
O o £
| Nn® T -
_ <L |
_
| _
! |
| |
! |
_ _ A =
| _ G’ - D
_ al !
| _ = £
_ _ "
_ _ |
| o O
_ _ m &
_ _ ! <
| | | o
_ o * 5
_ | "
- i i i i
pownsuod 5 O 2
ABisua = m o

mUE_cmmE apnjubew
Jo JapJo Jo JapJo

General Purpose vs. Application Specific
Processors

m Both GP processors and ASIPs (application specific instruction set
processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

0GP processors

- Neither instruction set nor microarchitecture or memory system are
customised for a particular application or family of applications

0 ASIPs

- Instruction set, microarchitecture and/or memory system are
customised for an application or family of applications.

|

Results in better performance and reduced power consumption.

11 of 36

What Makes an ASIP “Specific™?

m Instruction set (IS) specialisation

0 Exclude instructions which are not used
- reduces instruction word length (fewer bits needed for encoding);

- keeps controller and data path simple.

0 Introduce instructions, even “exotic” ones, which are specific to the
application: combinations of arithmetic instructions (multiply- accumulate),
small algorithms (encoding/decoding, filter), vector operations, string
manipulation or string matching, pixel operations, etc.

- reduces code size = reduced memory size, memory bandwidth,
power consumption, execution time.

- increases speed.

12 of 36

What Makes an ASIP “Specific™?

m Function unit and data path specialisation
0 Once an application specific IS is defined, this IS can be implemented
using a specific data path and specific function units.
- Adaptation of word length.
- Adaptation of register number.

- Adaptation of functional units

Highly specialised functional units can for string matching and
manipulation, pixel operation, arithmetics, and even complex units to
perform certain sequences of computations (co-processors).

13 of 36

What Makes an ASIP “Specific™?

m Memory specialisation

g Number and size of memory banks.

0 Number and size of access ports.

- They both influence the degree of parallelism in memory access.

- Having several smaller memory blocks (not one big) increases
parallelism and speed, and reduces power consumption.

- Sophisticated memory structures can increase cost and bandwidth
requirement.

7 Cache configuration:
- separate instruction/data?
- associativity
- cache size
- line size

14 of 36

What Makes an ASIP “Specific™?

m |nterconnect specialization

ad Interconnect of functional modules and registers.
0 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

15 of 36

What Makes an ASIP “Specific™?

m |nterconnect specialization

ad Interconnect of functional modules and registers.
0 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

m Control specialisation

1 Centralised control or distributed (globally asynchronous)?
7 Pipelining?
a9 Out of order execution?

0 Hardwired or microprogrammed?

16 of 36

ASIP Design Flow

Processor :
Architecture}\ /< Algorlthm(s))
Compiler

i

Simulator

Performance
numbers

17 of 36

ASIP Design Flow

Processor
Architecture

Compiler

i

Simulator

0 Retargetable compiler

a3 Configurable simulator

Performanc

numbers

//<Algorithm(s))

©

In order to be able to generate a specialised architecture you need:

18 of 36

Retargetable Compiler

Processor _
Architecture Algorithm)
Retargetable

Compiler

<Object code>

m An automatically retargetable compiler can be used for a range of different target
architectures.

The actual code optimization and code generation is done by the compiler, based
on a description of the target processor architecture. This description is formulated
in a, so called, “architecture description language”.

19 of 36

Configurable Simulator

m Such a simulator can be configured for a
Processor particular architecture (based on an
Architectu re) architecture description)

<Object code> _
m [he mostimportant output produced by
i the simulator is performance numbers:
Simulator 7 throughput

0 delay

Performance d power/energy consumption
numbers

20 of 36

Application Specific Platforms

Not only processors but also hardware platforms can be specialised for
classes of applications.

The platform will define a certain communication infrastructure (buses and
protocols), certain processor cores, peripherals, accelerators commonly used in

the particular application area, and basic memory structure.

21 of 36

Application Specific Platforms

Not only processors but also hardware platforms can be specialised for
classes of applications.

The platform will define a certain communication infrastructure (buses and
protocols), certain processor cores, peripherals, accelerators commonly used in

the particular application area, and basic memory structure.

~

(
uProc. || uProc. || uProc. || cach DMA M -
Core3 || Core2 || Core1 s erriory Bridge
System bus

Peripheral bus

|

Peripheral

;

logic

Recon-
figurable

|

Peripheral

22 of 36

Application Specific Platforms

Design space exploration for platform definition:

Platform Applicati N
r \Arch|tecture pplications
Mapping/

Complllng

Slmulator

JPerformance\

numbers

23 of 36

Instantiating a Platform

m Once we have an application, the chip to implement on will not be designed as a
collection of independently developed blocks, but will be an instance of an
application specific platform.

C Platform)
Architecture

Platform At
Instance Application >
Mapping/
Compiling
Simulator

Performance
numbers

24 of 36

Instantiating a Platform

m Once we have an application, the chip to implement on will not be designed as a
collection of independently developed blocks, but will be an instance of an
application specific platform.

0 The hardware platform will
Platform _
Architecture be refined by
- determining memory
and cache size;

latform Application) - identifying the particu-
Mapping/ lar cores, peripherals;

Compiling - adding specific ASICs,
l accelerators:
Simulator - determining the amount

of reconfigurable logic.

Performance
numbers

25 of 36

System Platforms

m What we discussed about are hardware platforms.

m The hardware platform is delivered together with a software layer:
hardware platform + software layer = system platform.

0 Software layer:
- real-time operating system
- device drivers
- network protocol stack
- compilers

0 The software layer creates an abstraction of the hardware platform (an
application program interface) to be seen by the application programs.

26 of 36

|IP-Based Design (Design Reuse)

m The key conceptin order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not start from
scratch but reuse as much as possible from previous designs, or use
commercially available pre-designed /P blocks.

IP: intellectual property.

m Some people call this IP-based design, core-based design, reuse techniques: The
process of producing a system design by reusing existing components.

27 of 36

|IP-Based Design

What are the blocks (cores) we reuse?

0 interfaces, encoders/decoders, filters, memories, timers, microcontroller-
cores, DSP-cores, RISC-cores, GP processor-cores.

0 A core is a design block which is larger than a typical RTL component.

28 of 36

|IP-Based Design

Libra Libra
(VendorryAD CVendorryB)

Core1 <« » Core2 <«——» Core3d

9%@ glue
s g
Interconnection bus/switch Hg 1 1/O
glue - |
I
Core 4 :
I

pprocessor =~

Libra
CVendorryCD

29 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

} !

rapid integration low flexibility

30 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

} !

rapid integration low flexibility

m Firm cores: technology-mapped gate-level netlists.

}

less predictability flexibility during
place and route

31 of 36

Types of Cores

m Hard cores: are fully designed, placed, and routed by the supplier.

}

A completely validated layout with definite timing

} !

rapid integration low flexibility

m Firm cores: technology-mapped gate-level netlists.

}

less predictability flexibility during
place and route

m Soft cores: synthesizable RTL or behavioral descriptions.

!

much work with maximal flexibility
integration and

verification.

32 of 36

Reconfigurable Systems

Programmable Hardware Circuits:

0 They implement arbitrary combinational or sequential circuits and can

be configured by loading a local memory that determines the
interconnection among logic blocks.

0 Reconfiguration can be applied an unlimited number of times.

Main applications:

0 Software acceleration

0 Prototyping

9 EHET

T

|
| T

|

|
B H
|
E

5 FHE
N : _E &H_
49 B0

33 of 36

Reconfigurable Systems

Dynamic reconfiguration:

I '_}

IR t t

. :_'“'f FPGA
--------------- - Accelerator

34 of 36

Reconfigurable Systems

Dynamic reconfiguration: = Spacial partitioning:

What goes into software(uProcessor)
and what into hardware (FPGA)?

:

FPGA
Accelerator

35 of 36

Reconfigurable Systems

Dynamic reconfiguration: »s Temporal partitioning:

At which moment to download which
module into the FPGA?

FPGA
Accelerator

36 of 36

System on Chip with reconfigurable datapath:

Reconfigurable Systems

On
<= chip
mem.

> CPU

—}

Reconfigurable

datapath

[Coode |

Y

Profiling &

Kernel

extraction

Y

C Kernels)

Y

Hw/Sw

partitioning

/

Datapath
synthesis

Y

C code

37 of 36

	Slide 1: System Design and Methodology / Embedded Systems Design VIII. Architectures and Platforms
	Slide 2: ARCHITECTURES AND PLATFORMS
	Slide 3
	Slide 4: Architecture Selection and Mapping
	Slide 5: Architecture Selection
	Slide 6: Architecture Selection
	Slide 7: Architecture Selection
	Slide 8: Architecture Selection
	Slide 9: Architecture Selection
	Slide 10: Architecture Selection
	Slide 11: General Purpose vs. Application Specific Processors
	Slide 12: What Makes an ASIP “Specific”?
	Slide 13: What Makes an ASIP “Specific”?
	Slide 14: What Makes an ASIP “Specific”?
	Slide 15: What Makes an ASIP “Specific”?
	Slide 16: What Makes an ASIP “Specific”?
	Slide 17: ASIP Design Flow
	Slide 18: ASIP Design Flow
	Slide 19: Retargetable Compiler
	Slide 20: Configurable Simulator
	Slide 21: Application Specific Platforms
	Slide 22: Application Specific Platforms
	Slide 23: Application Specific Platforms
	Slide 24: Instantiating a Platform
	Slide 25: Instantiating a Platform
	Slide 26: System Platforms
	Slide 27: IP-Based Design (Design Reuse)
	Slide 28: IP-Based Design
	Slide 29: IP-Based Design
	Slide 30: Types of Cores
	Slide 31: Types of Cores
	Slide 32: Types of Cores
	Slide 33: Reconfigurable Systems
	Slide 34: Reconfigurable Systems
	Slide 35: Reconfigurable Systems
	Slide 36: Reconfigurable Systems
	Slide 37: Reconfigurable Systems

