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ARCHITECTURES AND PLATFORMS

1. Architecture Selection: The Basic Trade-offs

2. General Purpose vs. Application-Specific Processors

3. Processor Specialisation

4. ASIP Design Flow

5. Tool Support for Processor Specialisation

6. Application Specific Platforms

7. IP-Based Design (Design Reuse)

8. Reconfigurable Systems
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Architecture Selection and Mapping

◼ Select underlying hardware structure on which to run the modelled system.

◼ Map the functionality captured by the system over the components of the 

selected architecture.

Functionality includes processing and communication.



Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

or something in-between
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Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

Use programmable processors running software.

Use dedicated electronics
fixed 

reconfigurable
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Architecture Selection

The trade-offs:

 Performance (high speed, low power consumption)
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Architecture Selection

The trade-offs:

 Performance (high speed, low power consumption)

 Flexibility (how easy it is to upgrade or modify)
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Architecture Selection
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General Purpose vs. Application Specific 

Processors

◼ Both GP processors and ASIPs (application specific instruction set 

processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

 GP processors

- Neither instruction set nor microarchitecture or memory system are 

customised for a particular application or family of applications

 ASIPs

- Instruction set, microarchitecture and/or memory system are 

customised for an application or family of applications.

Results in better performance and reduced power consumption.
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What Makes an ASIP “Specific”?

◼ Instruction set (IS) specialisation

 Exclude instructions which are not used

- reduces instruction word length (fewer bits needed for encoding);

- keeps controller and data path simple.

 Introduce instructions, even “exotic” ones, which are specific to the 

application: combinations of arithmetic instructions (multiply- accumulate), 

small algorithms (encoding/decoding, filter), vector operations, string 

manipulation or string matching, pixel operations, etc.

- reduces code size  reduced memory size, memory bandwidth, 

power consumption, execution time.

- increases speed.
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What Makes an ASIP “Specific”?

◼ Function unit and data path specialisation

 Once an application specific IS is defined, this IS can be implemented 

using a specific data path and specific function units.

- Adaptation of word length.

- Adaptation of register number.

- Adaptation of functional units

Highly specialised functional units can for string matching and 

manipulation, pixel operation, arithmetics, and even complex units to 

perform certain sequences of computations (co-processors).
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What Makes an ASIP “Specific”?

◼ Memory specialisation

 Number and size of memory banks.

 Number and size of access ports.

- They both influence the degree of parallelism in memory access.

- Having several smaller memory blocks (not one big) increases 

parallelism and speed, and reduces power consumption.

- Sophisticated memory structures can increase cost and bandwidth 

requirement.

 Cache configuration:

- separate instruction/data?

- associativity

- cache size

- line size
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What Makes an ASIP “Specific”?

◼ Interconnect specialization

 Interconnect of functional modules and registers.

 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.
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What Makes an ASIP “Specific”?

◼ Interconnect specialization

 Interconnect of functional modules and registers.

 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

◼ Control specialisation

 Centralised control or distributed (globally asynchronous)?

 Pipelining?

 Out of order execution?

 Hardwired or microprogrammed?



ASIP Design Flow
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ASIP Design Flow
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◼ In order to be able to generate a specialised architecture you need:

 Retargetable compiler

 Configurable simulator
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Retargetable Compiler

Object code

◼ An automatically retargetable compiler can be used for a range of different target 

architectures.

The actual code optimization and code generation is done by the compiler, based 

on a description of the target processor architecture. This description is formulated 

in a, so called, “architecture description language”.
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Configurable Simulator

Simulator
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Performance 
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Object code

◼ Such a simulator can be configured for a 

particular architecture (based on an 

architecture description)
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◼ The most important output produced by 

 the simulator is performance numbers:

 throughput

 delay

 power/energy consumption
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Application Specific Platforms

◼ Not only processors but also hardware platforms can be specialised for 

classes of applications.

The platform will define a certain communication infrastructure (buses and 

protocols), certain processor cores, peripherals, accelerators commonly used in 

the particular application area, and basic memory structure.



Application Specific Platforms

◼ Not only processors but also hardware platforms can be specialised for 

classes of applications.

The platform will define a certain communication infrastructure (buses and 

protocols), certain processor cores, peripherals, accelerators commonly used in 

the particular application area, and basic memory structure.
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Application Specific Platforms

Design space exploration for platform definition:
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Instantiating a Platform

Simulator
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◼ Once we have an application, the chip to implement on will not be designed as a 

collection of independently developed blocks, but will be an instance of an 

application specific platform.

Platform 
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Instantiating a Platform

◼ Once we have an application, the chip to implement on will not be designed as a 

collection of independently developed blocks, but will be an instance of an 

application specific platform.
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 The hardware platform will 

be refined by

- determining memory 

and cache size;

- identifying the particu- 

lar cores, peripherals;

- adding specific ASICs, 

accelerators;

- determining the amount 

of reconfigurable logic.
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System Platforms

◼ What we discussed about are hardware platforms.

◼ The hardware platform is delivered together with a software layer: 

hardware platform + software layer = system platform.

 Software layer:

- real-time operating system

- device drivers

- network protocol stack

- compilers

 The software layer creates an abstraction of the hardware platform (an 

application program interface) to be seen by the application programs.
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IP-Based Design (Design Reuse)

◼ The key concept in order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not start from 

scratch but reuse as much as possible from previous designs, or use 

commercially available pre-designed IP blocks.

IP: intellectual property.

◼ Some people call this IP-based design, core-based design, reuse techniques: The 

process of producing a system design by reusing existing components.



28 of 36

IP-Based Design

What are the blocks (cores) we reuse?

 interfaces, encoders/decoders, filters, memories, timers, microcontroller-

cores, DSP-cores, RISC-cores, GP processor-cores.

 A core is a design block which is larger than a typical RTL component.



IP-Based Design
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Types of Cores

◼ Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

rapid integration low flexibility
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Types of Cores

◼ Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

◼ Firm cores: technology-mapped gate-level netlists.

◼ Soft cores: synthesizable RTL or behavioral descriptions.

rapid integration low flexibility

less predictability flexibility during 

place and route

much work with 

integration and 

verification.

maximal flexibility
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Reconfigurable Systems

◼ Programmable Hardware Circuits:

 They implement arbitrary combinational or sequential circuits and can 

be configured by loading a local memory that determines the 

interconnection among logic blocks.

 Reconfiguration can be applied an unlimited number of times.

◼ Main applications:

 Software acceleration

 Prototyping
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Reconfigurable Systems

Dynamic reconfiguration:

---------------

---------------

---------------

Processor Memory

FPGA
Accelerator
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Reconfigurable Systems

Dynamic reconfiguration:
◼ Spacial partitioning:

What goes into software(Processor) 

and what into hardware (FPGA)?

---------------

---------------

---------------

Processor Memory

FPGA
Accelerator
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Reconfigurable Systems

Dynamic reconfiguration:

---------------

---------------

---------------

Processor Memory

FPGA
Accelerator
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◼ Temporal partitioning:

At which moment to download which 

module into the FPGA?



Reconfigurable Systems

System on Chip with reconfigurable datapath:
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