
System Design and Methodology /

Embedded Systems Design

VIII. Architectures and Platforms

1 of 63

TDTS07/TDDI08

VT 2026

Ahmed Rezine

(Based on material by Petru Eles and Soheil Samii)

Institutionen för datavetenskap (IDA)

Linköpings universitet

ARCHITECTURES AND PLATFORMS

1. Architecture Selection: The Basic Trade-offs

2. General Purpose vs. Application-Specific Processors

3. Processor Specialisation

4. ASIP Design Flow

5. Tool Support for Processor Specialisation

6. Application Specific Platforms

7. IP-Based Design (Design Reuse)

8. Reconfigurable Systems

2 of 36

System model

Prototype

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Arch. Selection

Mapping
System

architecture

Estimation

Mapped and
scheduled model

Scheduling

OK

 not OK

OK

Fabrication
not OK

Formal
Verification

Softw. model

not OK

Simulation

Formal
Verification

Hardw. model

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocks

Simulation

Simulation

3 of 36

4 of 36

Architecture Selection and Mapping

◼ Select underlying hardware structure on which to run the modelled system.

◼ Map the functionality captured by the system over the components of the

selected architecture.

Functionality includes processing and communication.

Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

or something in-between

General

Purpose

vs.

Application

Specific

5 of 36

Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

Use programmable processors running software.

Use dedicated electronics
fixed

reconfigurable

or something in-between

or both

General

Purpose

vs.

Application

Specific

6 of 36

Software

vs.

Hardware

Architecture Selection

Build customised architecture strictly optimized for the application.

Use general purpose, existing platform and map the application on it.

Use programmable processors running software.

Use dedicated electronics
fixed

reconfigurable

Monoprocessor

Multiprocessor
single chip

multi chip

or something in-between

or both

General

Purpose

vs.

Application

Specific

7 of 36

Software

vs.

Hardware

Mono vs. Multipr.

Single vs. Multichip

Architecture Selection

The trade-offs:

 Performance (high speed, low power consumption)

Application specific

General purpose

Hardware

Reconfigurable

hardware

Software

high

low

high

8 of 36

low

Architecture Selection

The trade-offs:

 Performance (high speed, low power consumption)

 Flexibility (how easy it is to upgrade or modify)

General purpose

Application specific

Application specific

General purpose

Hardware

Reconfigurable

hardware

Software

high

low

high

low

high Software high

low

Reconfigurable

hardware

Hardware low
9 of 36

Architecture Selection

flexibility

e
n
e
rg

y

c
o
n
s
u
m

e
d

low

low

med.

med.

high

high

o
rd

e
r

o
f

m
a
g
n
it
u
d
e

o
rd

e
r

o
f

m
a
g
n
it
u
d
e

ASIC

FPGA

10 of 36

ASIP

GP proc.

General Purpose vs. Application Specific

Processors

◼ Both GP processors and ASIPs (application specific instruction set

processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

 GP processors

- Neither instruction set nor microarchitecture or memory system are

customised for a particular application or family of applications

 ASIPs

- Instruction set, microarchitecture and/or memory system are

customised for an application or family of applications.

Results in better performance and reduced power consumption.

11 of 36

12 of 36

What Makes an ASIP “Specific”?

◼ Instruction set (IS) specialisation

 Exclude instructions which are not used

- reduces instruction word length (fewer bits needed for encoding);

- keeps controller and data path simple.

 Introduce instructions, even “exotic” ones, which are specific to the

application: combinations of arithmetic instructions (multiply- accumulate),

small algorithms (encoding/decoding, filter), vector operations, string

manipulation or string matching, pixel operations, etc.

- reduces code size  reduced memory size, memory bandwidth,

power consumption, execution time.

- increases speed.

13 of 36

What Makes an ASIP “Specific”?

◼ Function unit and data path specialisation

 Once an application specific IS is defined, this IS can be implemented

using a specific data path and specific function units.

- Adaptation of word length.

- Adaptation of register number.

- Adaptation of functional units

Highly specialised functional units can for string matching and

manipulation, pixel operation, arithmetics, and even complex units to

perform certain sequences of computations (co-processors).

14 of 36

What Makes an ASIP “Specific”?

◼ Memory specialisation

 Number and size of memory banks.

 Number and size of access ports.

- They both influence the degree of parallelism in memory access.

- Having several smaller memory blocks (not one big) increases

parallelism and speed, and reduces power consumption.

- Sophisticated memory structures can increase cost and bandwidth

requirement.

 Cache configuration:

- separate instruction/data?

- associativity

- cache size

- line size

15 of 36

What Makes an ASIP “Specific”?

◼ Interconnect specialization

 Interconnect of functional modules and registers.

 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

16 of 36

What Makes an ASIP “Specific”?

◼ Interconnect specialization

 Interconnect of functional modules and registers.

 Interconnect to memory and cache.

- How many internal buses?

- What kind of protocol?

- Additional connections increase the potential of parallelism.

◼ Control specialisation

 Centralised control or distributed (globally asynchronous)?

 Pipelining?

 Out of order execution?

 Hardwired or microprogrammed?

ASIP Design Flow

Algorithm(s)

Simulator

Processor
Architecture

Compiler

Performance
numbers

17 of 36

ASIP Design Flow

Algorithm(s)

Simulator

Processor
Architecture

Compiler

Performance
numbers

◼ In order to be able to generate a specialised architecture you need:

 Retargetable compiler

 Configurable simulator

18 of 36

Retargetable Compiler

Object code

◼ An automatically retargetable compiler can be used for a range of different target

architectures.

The actual code optimization and code generation is done by the compiler, based

on a description of the target processor architecture. This description is formulated

in a, so called, “architecture description language”.

AlgorithmProcessor
Architecture

Retargetable
Compiler

19 of 36

Configurable Simulator

Simulator

Processor
Architecture

Performance
numbers

Object code

◼ Such a simulator can be configured for a

particular architecture (based on an

architecture description)

20 of 36

◼ The most important output produced by

 the simulator is performance numbers:

 throughput

 delay

 power/energy consumption

21 of 36

Application Specific Platforms

◼ Not only processors but also hardware platforms can be specialised for

classes of applications.

The platform will define a certain communication infrastructure (buses and

protocols), certain processor cores, peripherals, accelerators commonly used in

the particular application area, and basic memory structure.

Application Specific Platforms

◼ Not only processors but also hardware platforms can be specialised for

classes of applications.

The platform will define a certain communication infrastructure (buses and

protocols), certain processor cores, peripherals, accelerators commonly used in

the particular application area, and basic memory structure.

Proc.
Core1

DMA Memory Bridge

Peripheral
Recon-

figurable

logic

System bus

Peripheral bus

CacheProc.
Core2

Proc.
Core3

Peripheral

22 of 36

Application Specific Platforms

Design space exploration for platform definition:

Platform
Architecture

Mapping/
Compiling

Simulator

Performance
numbers

Applications

23 of 36

Instantiating a Platform

Simulator

Platform
Instance

Mapping/
Compiling

Performance
numbers

Application

◼ Once we have an application, the chip to implement on will not be designed as a

collection of independently developed blocks, but will be an instance of an

application specific platform.

Platform
Architecture

24 of 36

Instantiating a Platform

◼ Once we have an application, the chip to implement on will not be designed as a

collection of independently developed blocks, but will be an instance of an

application specific platform.

Simulator

Platform
Instance

Mapping/
Compiling

Performance
numbers

Application

Platform
Architecture

 The hardware platform will

be refined by

- determining memory

and cache size;

- identifying the particu-

lar cores, peripherals;

- adding specific ASICs,

accelerators;

- determining the amount

of reconfigurable logic.

25 of 36

26 of 36

System Platforms

◼ What we discussed about are hardware platforms.

◼ The hardware platform is delivered together with a software layer:

hardware platform + software layer = system platform.

 Software layer:

- real-time operating system

- device drivers

- network protocol stack

- compilers

 The software layer creates an abstraction of the hardware platform (an

application program interface) to be seen by the application programs.

27 of 36

IP-Based Design (Design Reuse)

◼ The key concept in order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not start from

scratch but reuse as much as possible from previous designs, or use

commercially available pre-designed IP blocks.

IP: intellectual property.

◼ Some people call this IP-based design, core-based design, reuse techniques: The

process of producing a system design by reusing existing components.

28 of 36

IP-Based Design

What are the blocks (cores) we reuse?

 interfaces, encoders/decoders, filters, memories, timers, microcontroller-

cores, DSP-cores, RISC-cores, GP processor-cores.

 A core is a design block which is larger than a typical RTL component.

IP-Based Design

Core 1 Core 2 Core 3

Library
Vendor A

Interconnection bus/switch

Library
Vendor B

processor

Library
Vendor C

In
te

rf
a
c
e

I/O

glue glue glue

glue

Core 4

29 of 36

Types of Cores

◼ Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

rapid integration low flexibility

30 of 36

Types of Cores

◼ Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

◼ Firm cores: technology-mapped gate-level netlists.

rapid integration low flexibility

less predictability flexibility during

place and route

31 of 36

Types of Cores

◼ Hard cores: are fully designed, placed, and routed by the supplier.

A completely validated layout with definite timing

◼ Firm cores: technology-mapped gate-level netlists.

◼ Soft cores: synthesizable RTL or behavioral descriptions.

rapid integration low flexibility

less predictability flexibility during

place and route

much work with

integration and

verification.

maximal flexibility

32 of 36

Reconfigurable Systems

◼ Programmable Hardware Circuits:

 They implement arbitrary combinational or sequential circuits and can

be configured by loading a local memory that determines the

interconnection among logic blocks.

 Reconfiguration can be applied an unlimited number of times.

◼ Main applications:

 Software acceleration

 Prototyping

33 of 36

Reconfigurable Systems

Dynamic reconfiguration:

Processor Memory

FPGA
Accelerator

34 of 36

Reconfigurable Systems

Dynamic reconfiguration:
◼ Spacial partitioning:

What goes into software(Processor)

and what into hardware (FPGA)?

Processor Memory

FPGA
Accelerator

35 of 36

Reconfigurable Systems

Dynamic reconfiguration:

Processor Memory

FPGA
Accelerator

36 of 36

◼ Temporal partitioning:

At which moment to download which

module into the FPGA?

Reconfigurable Systems

System on Chip with reconfigurable datapath:

Reconfigurable
datapath

On
chip
mem.

CPU

C code

Profiling &
Kernel

extraction

Hw/Sw
partitioning

Kernels

C codeDatapath
synthesis

37 of 36

	Slide 1: System Design and Methodology / Embedded Systems Design VIII. Architectures and Platforms
	Slide 2: ARCHITECTURES AND PLATFORMS
	Slide 3
	Slide 4: Architecture Selection and Mapping
	Slide 5: Architecture Selection
	Slide 6: Architecture Selection
	Slide 7: Architecture Selection
	Slide 8: Architecture Selection
	Slide 9: Architecture Selection
	Slide 10: Architecture Selection
	Slide 11: General Purpose vs. Application Specific Processors
	Slide 12: What Makes an ASIP “Specific”?
	Slide 13: What Makes an ASIP “Specific”?
	Slide 14: What Makes an ASIP “Specific”?
	Slide 15: What Makes an ASIP “Specific”?
	Slide 16: What Makes an ASIP “Specific”?
	Slide 17: ASIP Design Flow
	Slide 18: ASIP Design Flow
	Slide 19: Retargetable Compiler
	Slide 20: Configurable Simulator
	Slide 21: Application Specific Platforms
	Slide 22: Application Specific Platforms
	Slide 23: Application Specific Platforms
	Slide 24: Instantiating a Platform
	Slide 25: Instantiating a Platform
	Slide 26: System Platforms
	Slide 27: IP-Based Design (Design Reuse)
	Slide 28: IP-Based Design
	Slide 29: IP-Based Design
	Slide 30: Types of Cores
	Slide 31: Types of Cores
	Slide 32: Types of Cores
	Slide 33: Reconfigurable Systems
	Slide 34: Reconfigurable Systems
	Slide 35: Reconfigurable Systems
	Slide 36: Reconfigurable Systems
	Slide 37: Reconfigurable Systems

